
INSTALLATION PRICE, DEGRADATION, AND VALUE IN 

RESIDENTIAL PHOTOVOLTAIC SYSTEMS 

 
 

by 
 

Andrew Lick 
 

A thesis submitted in partial fulfillment of the requirements for the  
 

degree of  
 
 
 

Master of Science 
 

Environment and Resources: Nelson Institute for Environmental Studies 
 
 

at the 
 

UNIVERSITY OF WISCONSIN–MADISON 
 

2017 
 
 
 
 
 
 
 
 
 
 
 
 
La Follette School Working Paper No. 2017-003 
http://www.lafollette.wisc.edu/research/publications 
 
October 2017 

http://www.lafollette.wisc.edu/research/publications


 

 

2 

Abstract 
 
Solar photovoltaic (PV) systems are becoming price competitive with conventional 

electricity sources. Their adoption is predicated on both private (electricity cost savings) and 

public (climate and air quality) benefits, which are obscured by wide variation in PV system 

price. System quality may be an important source of that variation, but it remains poorly 

understood. Here, I used degradation as a proxy for system quality, and studied degradation 

of small (15<kW) California Solar Initiative (CSI) systems to explore the hypothesis that 

high price reflects high quality. I analyzed data for 386 mature systems generated by the 

Expected Performance Based Buydown (EPBB) portion of the May 2016 CSI Working 

Dataset, the National Solar Radiation Database (NSRDB), and the Tracking the Sun (TTS) 

dataset. These systems showed a median annual degradation rate of 1.0% based on year-on-

year (YOY) differencing. Using multiple linear regression, I found no support for the 

hypothesis that high-cost residential solar PV systems avoid annual degradation differently 

than low-cost systems. In general, the model explains little variation in the data, likely due to 

either data quality issues in the components of the degradation rate calculation and/or to 

significant but unexplored variables. Additionally, by estimating the value of a PV system 

with median annual degradation relative to one with no degradation, I demonstrated that the 

value of degradation represents a non-trivial cost to system owners. Despite a large range 

(+32% to 0%), median degradation adds 11% to the $/kWh cost of residential solar. These 

results demonstrate that policy interventions targeting degradation are an important area for 

transparency and financial risk reduction in residential PV markets. 

Acronyms and Abbreviations 
 
AC  Alternating Current 
C  Celsius 
CSI  California Solar Initiative 
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DC  Direct Current 
DHI  Diffuse Horizontal Irradiance 
DNI  Direct Normal Irradiance 
EPBB  Expected Performance Based Buydown 
GHI  Global Horizontal Irradiance 
HIT  Heterojunction with Intrinsic Thin layer silicon 
m  Meter 
Mono-C-Si Monocrystalline silicon 
Multi-C-Si Multi crystalline silicon 
km  Kilometer 
kW  Kilowatt 
kWh  Kilowatt hour 
LCOE  Levelized cost of energy 
NSRDB  National Solar Radiation Database 
OLS  Ordinary Least Squares 
PG&E  Pacific Gas and Electric 
POA  Plane of Array Irradiance 
PR  Performance Ratio 
PV  Photovoltaic 
SCE   Southern California Edison 
SDG&E San Diego Gas and Electric 
STC  Standard Test Conditions 
TTS  Tracking the Sun dataset 
W  Watt 
YOY  Year-on-year method of calculating degradation 
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Introduction 
 

Solar photovoltaic (PV1) cells convert sunlight directly into electricity. Today PV 

makes up only about 0.9% of U.S. electricity (U.S. Energy Information Administration 2017) 

but it is a potentially important source of low-emission supply. Solar energy has the technical 

potential to supply 69% of all electricity and 35% of the total energy in the U.S. PV by 2050 

(Fthenakis, Mason, and Zweibel 2009), representing an important component in a transition 

to a low-emission electricity sector, especially given that global energy consumption is 

predicted to rise 48% by 2040 (U.S. Energy Information Administration 2016). Any 

transition to a low-emission electricity system requires scalable technology and competitive 

price.  

Up from 3.1 gigawatts (GW) in 2015, the U.S. added 9.5 GW in 2016 making solar 

the number one source of new electric generation brought online ( U.S. Energy Information 

Administration 2016) while sustained growth has exceeded 40 percent per year for most of 

the last decade (Kann et al. 2013). Historically, each doubling of deployment has resulted in 

20 percent module price declines (Swanson 2006) and from 2009 to 2013 prices fell roughly 

50 percent (Barbose et al. 2015). However, as more systems are deployed for longer, 

reliability plays a larger role for public opinion and financial risk. Therefore, the interplay 

between price and reliability is critical to solar PV’s continued expansion as a source of low-

emissions energy. The duration of PV system production aligning with the expectations of 

customers represents an important challenge for the industry. 

A common saying among electricians who install solar PV systems is that “I don’t 

have enough money to buy cheap tools.” No great leap requires one to conclude that a 

                                                 
1 Here and throughout I used PV as a shorthand for “rooftop” solar, which generally refers to PV systems 
installed on residential roofs and correspond to small residential PV applications. 



 

 

7 

relationship between the cost of components and the quality of the work and design in a PV 

system follows the same logic; building a robust system is somewhat at odds with building a 

low-cost system because it requires high-quality inputs and skilled labor. The solar industry 

has limited experience with PV systems deployed for long periods of time, making it easy to 

overlook the role reliability and particularly, the role degradation plays in the viability and 

value of a PV system. This work brings empirical evidence to the oft-asked question: “Do 

residential PV customers get what they pay for?”  

To further illustrate the point, consider a hypothetical example. Two solar PV systems 

of similar size and purchase price, both installed in the same year in adjacent neighborhoods 

in Oakland, California. The installations are only blocks apart, where they have a similar 

solar resource, the same financial incentives, the same installers operate in the area, the 

houses are about the same age and have similar load profiles, even the roofing materials are 

of similar age and material. The main difference is that one system has been generating 

energy close to its rated capacity continuously for six years while the other has been dogged 

with problems that have reduced energy output. Although degradation connotes a slow 

decline in power this analysis defines degradation as explicitly inclusive of all factors that 

lead to loss of energy because performance and value are the results of both slow decline and 

catastrophic failure. 

I measured reliability as degradation and show the results regarding energy delivery 

while controlling for intervening weather factors begging the questions: Were the quality of 

the installations different? Do the differences result from the quality of the components? 

Zooming out of the neighborhood to the state and national scale, policy makers are keenly 

aware that there is a difference in price, but to what extent can one predict if low-priced 

systems result from lower-quality components installed using sloppy techniques? This 
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example encompasses the research question of this paper: Do higher priced residential 

solar PV systems more reliably generate more energy over their lifetimes and thus 

represent more value to customers?  

In system hardware and installation, PV systems contain the attributes of a durable 

good and a service where the service constitutes over half of the system costs (Nemet et al. 

2017). Since the quality of the service affects reliability, understanding degradation of whole 

PV systems is central to wider market penetration and the perception of financial risk. 

Consumer benefits are predicated on the performance of the investment and falling prices 

encourage consumption. Commonly, efficiency is thought to represent one of the major 

barriers to falling prices but while efficiency improvements are necessary, performance may 

be of equal importance (Woodhouse et al. 2016; Jones-Albertus et al. 2015). A focus on the 

relationship between the degradation and system price builds on previous work (Nemet et al. 

2017) that identifies drivers of price variation in PV systems while questioning the 

magnitude of variation in installation quality. Although not treated explicitely in this 

exploratory analysis, this is further complicated by the indsutry-wide falling prices. The 

trade-off between price and value is so far understudied in residential solar PV. 

This study makes two main contributions to solar degradation studies; it increases 

knowledge about degradation rates and the use of degradation rates to describe the residential 

PV market in California, by far the nation’s largest. First, since it is impossible to 

comprehensively simulate degradation mechanisms that naturally occur in the field through 

accelerated indoor testing (Phinikarides et al. 2014), estimated degradation rates for field 

deployed systems in themselves further the body of knowledge of the reliability of PV 

systems. It also builds accuracy onto a previous degradation study of CSI PV systems (Itron 

2012) by including more granular irradiance data specific to within 4km of each system. This 



 

 

9 

study takes advantage of systems that were installed 6 to 10 years ago and continuously 

monitored for 3 to 5 years. Second, it combines performance, weather, and market data to 

apply degradation as a proxy for system quality which may be an important source of price 

variation. 

Central to this paper is an investigation of the relationship of system price and 

degradation rate to assess whether low-priced systems are associated with higher 

degradation. Degradation rates quantifying the performance of entire systems also facilitate 

estimating the value of avoided degradation. The remainder of this paper is organized as 

follows. Section 1 estimates degradation rates. Section 2 uses multiple linear regression to 

estimate the magnitude of the association between installation price and the degradation 

observed in individual systems and across all systems. Section 3 shows the value of a high, 

median, and low degradation system relative to a system with none and shows the lost 

revenue over a system’s lifetime. Figure 1 describes the conceptual organization of this work 

from Section 1 through Section 3. 
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Figure 1. Workflow diagram. 

 

 
 

Throughout Figure 1 red text indicates the role degradation rates play in this analysis. 

The Section 1 portion of Figure 1 shows the creation of performance ratios (PR), which 

consist of AC power measured on-site in the numerator over the energy expected given the 

weather conditions of the same system in the denominator. Data filters or “AC Corrections” 

eliminate erroneous AC measurements and are explained below. Expected energy is the 

nameplate DC rating of the system at hourly intervals with weather corrected data shown as 

“DC Corrections”, also explained below. A degradation rate is calculated by subtracting a PR 

in year-one from a PR in year-two PR; a difference of 365 days. The degradation rate is 

output from Section 1 and input into Section 2 use as a dependent variable to investigate the 

degradation system price relationship. That relationship is captured as a positively sloped line 

in the bottom left and is the central topic in Section 2. Section 3 uses degradation rates to 

generate differences in production caused by degradation. The area above each wedge of 
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degradation represents additional cost per kWh and reduced revenue from lost kWh produced 

over the life of a PV system. 

Section 1: Degradation 

Solar PV Degradation  

A degradation rate is a quantified decline in power output over time defined by a rate 

of change over time. Degradation implies decline so is a negative rate of change over time. 

On the other hand, negative degradation is a positive rate of change resulting in increasing 

power output over time for a given PV system. To avoid confusion regarding the signs 

involved, I refer to a negative rate of change in performance as faster degradation and a 

positive rate of change in performance over time as slower degradation.  

There are two general types of solar PV degradation studies: whole system 

degradation and equipment degradation. To date, most degradation studies are either a 

mixture of whole system and equipment degradation rates (Dirk C Jordan and Kurtz 2015), 

system-level for single solar PV systems (Kymakis, Kalykakis, and Papazoglou 2009), 

exclusively equipment degradation rates (Sharma and Chandel 2013), single and multiple-

measurement degradation rate studies (Dirk C. Jordan et al. 2016) with only a single known 

multi-year, multiple system study using the year-on-year (YOY) method (Anderson, 

Defreitas, and Hasselbrink, Jr. 2013). The most comprehensive review to date encompasses 

nearly 11,000 degradation rates in 200 studies from 40 countries (Dirk C. Jordan et al. 2016) 

and includes both module and system-level degradation.  
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This study focuses on whole system degradation, defined as the overall change in 

system performance over time including module and inverter degradation, soiling2, shading, 

and inadequate maintenance, and explicitly includes system outages because their inclusion 

helps identify some of the performance variation caused by system malfunctions from 

equipment and poor installations practices. The variability in solar resource must be cleanly 

separated from losses from component deterioration, malfunction, and installation quality to 

assess performance through degradation. 

Data 

Degradation rate estimation utilizes data from individual system characteristics, 

alternating current (AC) production, irradiance, ambient temperature, wind speed, solar 

zenith angle, and system location. System characteristics come from publicly available 

California Solar Initiative3 (CSI) data, based on installer provided details. Production data is 

also publicly available from metered generation measurements of 504 CSI systems starting in 

2010 and ending in 2016 and time stamped in fifteen-minute intervals. Systems come from 

the three largest utility service areas in California Pacific Gas & Electric, Southern California 

Edison, and San Diego Gas & Electric. Irradiance, ambient temperature, wind speed, angle of 

incidence, and solar zenith angle data come from the National Solar Radiation Database4 

(NSRDB) Physical Solar Model. This database has a spatial resolution of 4x4 kilometers, at 

half-hour intervals, and includes years 1998 to 2014. Additional system characteristics and 

                                                 
2 Soiling is the deposition of fine materials on the surface of the PV modules that inhibit incident radiation. 
3 Available from: http://www.californiadgstats.ca.gov/ 
4 Available from: https://nsrdb.nrel.gov/ 
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system location are available from the Tracking the Sun5 (TTS) dataset, updated to 2014. 

These data sources facilitate analysis throughout Sections 1, 2, and 3.  

Extraction of irradiance data from the NSRDB relies on the latitude and longitude of 

each system. The location of each system has a maximum of 3 km distance from the exact 

location of the NSRDB grid point. This should increase the accuracy of the performance 

ratios (PRs) relative to the previous degradation rate calculation (Itron 2012) that used zip 

code level irradiance data. Data from the NSRDB includes global horizontal (GHI), direct 

normal (DNI), and diffuse horizontal irradiance (DHI), ambient temperature (°C), wind 

speed (at a height of 10m), and solar zenith angle (degrees).  

 All production data represents systems incented by the Energy and Performance 

Based Buydown (EPBB) portion of the CSI rebate program. Of the 504 systems measured, I 

analyzed 386. I discarded systems with incomplete data by visually inspecting time-series 

plots (See Appendix A, Examples of Discarded Systems for more detail) and other criteria 

outlined in Table 1. Along with AC system production data, the time-series dataset represents 

5 years of performance evaluation (2010-2014). To maintain time-series equivalence 

between AC production and NSRDB data, all time stamps were averaged to hourly intervals.  

Various guides exist for acceptable ranges of data to calculate PRs and degradation 

rates. Table 1 filters screen data that would lead to erroneous PR values and degradation 

rates. I eliminated solar zenith angles greater than 90 degrees, which indicate nighttime data 

and are eliminated along with shifted data revealed through time-series plots. A minimum 

irradiance limit of 100 W/m2 ensures low light conditions from anything nearby that could 

act as a shade structure do not affect rates. This filter does not, however, account for 

changing shade conditions over time. For instance, a system may not suffer from shade in 

                                                 
5 Available from: https://openpv.nrel.gov/ 
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certain seasons from the presence of nearby deciduous trees and their leaves or a tree may 

grow larger and shade later in the life of the system. Metered system production is limited to 

the sum of the inverter maximum power ratings as any system producing more than is 

feasible based on inverter output capacity is erroneous. I discarded any rate showing a yearly 

change greater than +/-100 percent because I considered the doubling of a PR from the 

previous year before to represent an aberration in the data. I corrected spells of negative AC 

production where they mirrored positive values but in the negative direction. A minimum 

limit of 0 kilowatts (kW) AC excludes negative observations occurring randomly. Production 

data from CSI carries flags and those indicating erroneous data are discarded. Data points 

affected by inverter clipping6 can bias degradation rates and are excluded by discarding the 

top 2% of production from each system and dropping any observations indicating power 

clipping where the inverter operates at maximum power output. To limit bias in the 

combined degradation rate across all systems, I removed any year of data with less than 2000 

observations. The final sample includes exclusively fixed-tilt, grid-tied systems. Table 1 lists 

all filters, their ranges, and the amount of data discarded. 

 
 

                                                 
6 Inverter clipping is a situation in which the ratio of DC to AC in a system design is greater than one. On a cool 
sunny day, the modules deliver more power than can be inverted resulting in an artificially low PR. 
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Table 1. Data filters for limiting erroneous PRs. 
Filter Values Eliminated Observations 

Eliminated 
Nighttime Solar Zenith Angle > 90° 7,013,774  

 
 

Visually Inspected Invalid due to shifts, portions 
missing, etc. 

250,789 
 

Irradiance POA* < 100 W/m2 982,199  
 

AC power kW > Maximum Rated AC 
Capacity 

59,390 
 
 

Nameplate Rating kW > Maximum Rated DC 
Capacity 
 
 

602 

High/Low Degradation  A rate is eliminated +/-100% 
from the previous year 

2,060,819 

Negative Production 
 

kW < 0 91,130 
 

Invalid Data 
 

Flagged as Invalid 
 

1,924 
 
 

Inverter Clipping Eliminate top 2% of kW 
from each system 
 

111,479 
 

Insufficient Data Discard years with fewer 
than 2000 observations 

497,887 
 

Total  11,069,993 
*POA stands for plane-of-irradiance, which is a plane perpendicular to incident radiation. 

Methods 

While there are many estimation methods for degradation rates of systems, I selected 

the year-on-year (YOY) change in PR because it requires only AC production, weather, and 

system capacity data. The YOY change differences each observation of PR if a data point is 

available for the same day one year earlier. The difference is calculated by subtracting the 
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year-one data point from the year-two data point, repeated for each hour of the year. Five 

years of data generate four degradation rates data points for each hour of the year for 386 

systems before filtering. Because system measurements started at different times in 2010 for 

different systems with few measurements relative to subsequent years, after filtering, no 

systems achieved more than 2000 measurements in 2010. The result is that no system has a 

degradation data point for 2011 and instead of 4 data points for each hour of the year systems 

have a maximum of three and a minimum of one. Therefore, because no system here was 

monitored starting at installation, these systems can be thought of as mature systems as 

opposed to young systems. From these, I calculated a median degradation rate from a 

distribution of all systems counted together and a median rate from distributions associated 

with individual systems, where each system is counted only once. 

A similar study of 445 PV systems (Anderson, Defreitas, and Hasselbrink, Jr. 2013) 

used the same approach making results comparable across studies. One shortcoming of the 

YOY approach is that it does not explicitly capture soiling. However, the YOY approach is 

accurate to the extent that soiling is seasonal (Maghami et al. 2016). The rain patterns in the 

climate zones represented in this analysis are highly seasonal (Department of Water 

Resources, State of California 2014) lending validity to this approach. 

The performance ratio is a dimensionless ratio of observed to expected PV system 

output at a point in time normalized to irradiance and system size and quantifies the overall 

effect of losses from inverter inefficiency, wiring, cell and module mismatch, incomplete 

conversion of irradiance, soiling, snow, downtime, shading, and component failures and all 

other losses when converting from DC to AC power (Marion et al. 2005). The PR is for use 

in performance guarantees and contractual agreements because it holistically captures 

performance. An additional benefit of the PR is that it is especially useful for comparing the 
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performance of existing systems (Sengupta et al. 2015) and is used in almost a third of all 

published degradation rates facilitating comparisons between studies (Jordan and Kurtz 

2013).  

For PR calculations, I transposed irradiance into the plane-of-array (POA) based on 

the azimuth and tilt of each system. Together GHI, DNI, and DHI, along with solar zenith 

angles, provide the components necessary to calculate the total amount of irradiance incident 

on a flat plate solar module. Among the various transposition model, the Hay/Davies (Hay 

1979) and Perez (Perez et al. 1990) are the most popular and are seen as an industry standard 

(Hansen 2015). The difference in transposition models is in their treatment of DHI. The 

Hay/Davies model separates DHI into two separate components, the circumsolar diffuse and 

a rest-of-sky diffuse irradiance. The Perez model differs by adding a third relative to 

Hay/Davies, the near-horizon component. See Appendix A, Plane of Array Radiation for 

more details. Since previous degradation evaluations of CSI (Itron 2012) used the Perez 

model and it has the smallest associated errors at different locations across the continental 

U.S. (Lave 2015), I used it to calculate POA irradiance values for use in the PR. 

However, using POA with the exclusion of temperature and wind speed can result in 

PR calculations that suffer from bias due to the effects of local weather conditions at a PV 

site (Dierauf et al. 2013). Irradiance is the major driver of system production while ambient 

temperature, through a series of transformations to PV module cell temperature, negatively 

affect system production. Therefore, I used a weather-corrected PR to minimize any bias in 

the resulting system degradation estimates. Equation 1 defines the weather-corrected PR as in 

Dierauf et al. (2013). The PR is independent of location and system size. Equation 1 shows 

how the weather-corrected PR controls for system size in the denominator by multiplying the 

nameplate system rating by the available POA irradiance at hourly time stamp i. 
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(1) 

Where: 
 
PRi,j = Temperature-corrected performance ratio for system at weighted average for 
hour i, system j 
kWAC_i,j = Metered AC electrical generation for hour i, system j (kW)  
kWSTC_j = System power rating at STC, system j (kW)  
POAi,j = Irradiance measured plane of array for hour i, system j (kW/m2) 
GSTC = Irradiance at standard test conditions (STC) (1,000 W/m2)  
Tcell_i,j = Cell temperature computed from meteorological data for hour i, system j (°C)  
Tcell_typ_avg = Average cell temperature from current year of weather data (°C)  
δj = Temperature coefficient for power (%/°C) that corresponds to the installed 

modules. 
The summations are defined for hourly time steps7. 

 
 
 

Equation 1 shows irradiance (POAi,j) divided by irradiance at standard test conditions 

(GSTC). See Appendix A, Standard Test Conditions for more detail. Subtracting module cell 

temperature from the average annual irradiance-weighted cell temperature creates a cell 

temperature difference multiplied by the temperature coefficient for power, represented as a 

percent loss or gain depending on whether the cell temperature is higher or lower than the 

annual average cell temperature. Applying cell temperature corrections relies on PV array 

mounting. Some arrays are mounted on rails attached to the roof via stanchions holding them 

off the roof, close enough to the roof that heat dissipation can be altered by radiant heat from 

the structure. Others are pole-mounted in basically any tilt and not adjacent to large thermal 

masses. Installation location and the composition of the modules allows for the wind to 

dissipate heat from modules. The data do not include specific mounting techniques so I chose 

the most conservative convective heat transfer coefficients available for estimating module 
                                                 
7 Equation 1 comes from Dierauf et al. (2013), page 3. 
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cell temperature (King et al. 2004). See Appendix A, Convective Heat Transfer Equations 

and Coefficients for more detail. The effect of wind and sunlight on module cell temperature 

and therefore system output are corrections in the denominator of Equation 1 allowing for 

PRs with actual over normalized AC output for comparison across systems and time. 

Results 

The columns in Table 2 represent the 386 solar PV systems used in the analysis 

showing descriptive statistics of the overall degradation results. The column headed “All 

systems” shows a single median degradation rate across the entire fleet of systems in the 

dataset using the YOY approach with hourly data. Also using YOY, the column headed 

“Individual systems” shows the result of calculating a median degradation rate for each 

system, indicated by drastically fewer observations. 

I calculated the median degradation rates and their standard errors by sampling with 

replacement (bootstrap) with 1000 repetitions at the 95% confidence level. The median 

values are both significantly different from zero at the 95% confidence level.  

       Table 2. Descriptive statistics for degradation rates (%/year) 
Statistic Pooled hours of 

all systems 
Individual systems 

Mean -1.4 -1.0 

Standard Deviation 27 1.3 

Median Degradation Rate -1.0 -0.9 

Standard Error of the Median 0.00 0.05 

95% Confidence Interval +/- 0.01 +/- 0.1 

Minimum Degradation Rate -100 -8.8 

Maximum Degradation Rate 100 7.8 

Number of Observations 2,878,039 386 
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Using pooled hours of all systems to calculate a fleet degradation rate for the sample 

of residential systems in the CSI EPBB rebate program results in a degradation rate of 

1.0%/year. Figure 2 shows this distribution, which uses all 2,878,039 hourly observations in 

the dataset. The histogram has color-coded vertical bars showing the variation in degradation 

rates from different years around a black vertical line at the fleet median. Also, shown in 

Figure 2 are the wide tails of the degradation rates distribution that end at +/-100 percent. 

The distribution also shows a roughly normal distribution of rates on the positive and 

negative side of zero with the bulk concentrated near zero. The slightly negative median is of 

similar magnitude to rates in the literature (Dirk C. Jordan et al. 2016).  

Figure 2. Year-on-Year with Hourly Data: All Systems 
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Figure 2 shows that degradation rate measurements calculated from 2011-2012, 2012-

2013, and 2013-2014 appear to vary symmetrically around the median across all years. 

However, important to discerning if there are systematic differences from degradation rates 

in different years, are the results of three Wilcoxon signed-rank tests to determine if the 

median degradation rates from different years are statistically different from each other. 

Summary statistics in Table 3 show differences in both the median and mean degradation 

rates across year but with similar amounts of variation as evidenced by the standard 

deviations and similar confidence intervals. 

       Table 3. Summary statistics for degradation rates across years 
Year Median 

(%/year) 
Mean 

(%/year) 
Std. Dev. 95% CI 

2012 -1.4 -1.4 27 +/- 0.03 
2013 -0.3 -1.3 27 +/- 0.03 
2014 -1.2 -1.7 26 +/- 0.03 

 

Table 4 shows the results of the Wilcoxon signed-rank tests for the median of each year’s 

degradation rate compared to the other years. The null hypothesis is that the difference 

between medians is zero. The test result column indicates that between 2012 and 2013 the 

probability that the observed test statistic would be as extreme as observed is approximately 

zero (p-value = 0.00) if the difference between the medians was zero. The result is identical 

for other combinations of years. Therefore, a statistically significant difference between the 

median degradation rates exists in 2012, 2013, and 2014 compared to each other.  

Table 4. Test results for significant difference between 
degradation medians for years 2012, 2013, and 2014 

Difference Between 
Years 

Test Result 
(p-value) 

Statistically 
Significant 

2012 – 2013 0.00 Yes 
2013 – 2014 0.00 Yes 
2012 - 2014 0.00 Yes 
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While a full analysis is beyond the scope of this inquiry, the second column of        

Table 3, median degradation, shows a large difference between 2013 and 2012 as well as 

2013 and 2014. I investigated the both the association of geography by utility service 

territory and rain across months to explain the difference. Table 5 shows median degradation 

rates by year for each utility—Pacific Gas and Electric(PG&E), Southern California Edison 

(SCE), and San Diego Gas and Electric (SDG&E)—in the dataset. Here, 2013 also shows 

less degradation across utilities but is most pronounced in the SDG&E systems. The year 

2013 is anomalous especially for systems in the SDG&E service territory. 

                    Table 5. Median annual degradation by utility 
Year PGE  

Median 
(%/year) 

SCE  
Median 

(%/year) 

SDG&E 
Median 

(%/year) 
2012 -1.47 -1.36 -1.45 
2013 -0.35 -0.47 0.02 
2014 -1.13 -1.27 -1.12 
Mean -0.98 -1.03 -0.85 

  

As previously mentioned, using the YOY differencing approach to calculate 

degradation accounts for soiling where it is roughly seasonally equivalent. Where it is not, 

soiling introduces unaccounted variation into the degradation rates. The interplay between 

rain and soiling is therefore a likely candidate for a source of the low degradation show in 

Table 3 and Table 5 for 2013. Rain cleans the surface of the modules making incident 

radiation a more effective driver of the photovoltaic effect. It impacts PV system 

performance loss as a function of both the amount and frequency of rainfall (Kimber et al. 

2006), primarily dependent upon the time since the previous rainfall (Mejia and Kleissel 

2013). While a full analysis of soiling is possible with established techniques (Deceglie et al. 

2016) it remains beyond the scope of this report. Therefore, to offer a preliminary 

explanation of the results in Table 3 and Table 5, I combined monthly rain data from the 
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National Oceanic and Atmospheric Administration (NOAA)8 and plotted mean monthly rain 

and degradation rates from for each utility in the dataset from 2012-2014. 

The gold-colored line and dots in Figure 3 represent the monthly rain pattern in 

inches per month across California on the right vertical axis. The blue, green, and red show 

monthly median degradation rates for the three utility service areas in this analysis on the left 

vertical axis. Three characteristics stand out. First, degradation between utility areas follows 

roughly similar patterns across the time series with the more southern utilities, SCE and 

SDG&E showing slightly more monthly volatility. Second, 2013 shows a more prolonged 

period or low-rain interspersed with more small spikes compared to 2012 or 2014. At the 

monthly level, this data appears to explain some of the variation in the lower degradation due 

to more frequent cleaning of soiled modules. However, this does not differentiate monthly 

rain patterns according to the geography of the utility service area, which would be important 

for future study.  

 

                                                 
8 For more information see: https://www.ncdc.noaa.gov/ 
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           Figure 3. Monthly degradation and rain in California 

 

 

Third, there is a spike in the positive direction for all three utilities near January 2013 

with a similar occurrence although more pronounced and in the negative direction in January 

2014. Degradation rates calculated with the YOY approach measure the difference in PR 

from one year to the next so a large increase in rates (less degradation) in January 2013 has a 

large and opposite impact on January 2014. Given that soiling depends on the time since 

previous rainfall, the large rain month that spikes in the positive direction in December of 

2013 is likely to have a large impact on the performance in the subsequent month, January 

2013. This plot supports that explanation. Similarly, the negative spike in rates in January 

2014 may be explained by the lack of a large-rain month preceding it—shown by the 

increase in rain following instead of preceding January 2014. Therefore, the large rain month 

preceding January 2013 may have caused both the low degradation in that month and the 
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lack of a large rain month preceding January 2014 may have caused in high degradation in 

January 2014.  

A full analysis requires more granularity in both temporal and geographic rain data to 

explain the difference in years and utility service areas from soiling. However, monthly rain 

data combined with the lessons from previous research suggest an effect of rain on soiling 

and degradation at the monthly level, especially because they are not controlled for 

otherwise. Rain events interspersed across 2013 and a large rain month in December of 2013 

with no such rain month in December 2014 offer a plausible yet preliminary explanation for 

less observed degradation in 2013 relative to 2012 and 2014 and the most pronounced 

degradation spikes in Figure 3, respectively. As yearly degradation differences are important 

to investigate, so are the characteristics for systems and their distributions. 

Using the same hourly time-series AC production data, Figure 4 shows distributions 

of degradation rates for 386 individual systems instead of all systems together. Here, each 

system’s median is counted only once. Rates range from -8.8 to 7.8 percent per year with a 

vertical black line indicating the median of -0.9 percent per year. The standard error of the 

median at the 95% confidence interval is 0.05, showing that the uncertainty in this estimate is 

small relative to the  
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       Figure 4. Year-on-Year with Hourly Data: Individual Systems 

 
magnitude of the median. However, there is a large spread in the degradation rates. While not 

necessarily a physical improbability, negative degradation rates (less degradation or a 

positive rate of change in performance) manifest from uncertainty in the rate calculation. For 

example, in each system that operates continuously for three years, a system that 

underperforms between year one and year two, reverting to the mean or even above the mean 

in a subsequent year, generates slopes with different signs—some positive and some 

negative. Depending on the magnitude of those slopes, the positive slopes between year two 

and year three could result in a positive median over the range of the time-series dataset. 

Given the results in Table 4, this is a distinct possibility because 2013 rates are significantly 

lower than 2014 rates and where the increase from 2013 to 2014 is larger than the decrease 

from 2012 to 2013 negative degradation can occur. There are 27 individual systems with 

median degradation rates that have a positive rate of change over time, representing roughly 

7% of the systems in this sample. See Appendix A, Negative Degradation for more detail. 

Compared to Figure 2, in which a fleet distribution rather than a distribution of 

individual systems is shown, Figure 4 degradation rate medians for individual systems are 

considerably less dense on the positive side of zero. This distribution has 3 panels of 
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degradation rates at the system level overlaid with characteristics of the systems. The left 

panel shows how vintage, or year of system installation is distributed, the middle panel 

breaks out the same distribution by module technology, and the right panel by number of 

observations occurring at different areas in the distribution. 

The left panel shows no obvious systematic differences in degradation by vintage. 

Even though early life degradation data does not exist for most systems and Table 6 shows 

that almost 80% of systems are of vintage 2007 to 2009, two points stand out about the 

middle panel. First, as in Table 6, most of the systems in this dataset have either 

monocrystalline (Mono-c-Si) or multicrystalline (Multi-c-Si) and many fewer with 

Heterojunction with Intrinsic Thin Layer (HIT-Si) silicon modules. Second, the degradation 

rates for the three different module types represented in the data similarly show no obvious 

pattern for degradation associated with module technology. The right panel shows the 

distribution of the number of observations around the median degradation rate for the 

individual systems. Keeping in mind that a year of data was discarded when a system had 

fewer than 2,000 observations per year, this panel shows no obvious pattern of the density of 

observations for either less or more degradation. Across the panels, vintage module 

technology, and the number of observations for a given system appear not to map onto the 

degradation rate distribution at the individual system level in any systematic way. 

Table 6. Number of occurrences of the vintage, module 
technology and number of observations for individual 
system distribution 

Vintage N Module 
Technology 

N Number of 
Observations 

N 

2007 96 HIT-Si 17 < 4,000 65 
2008 97 Mono-c-Si 199 4,000 – 5,999 28 
2009 106 Multi-c-Si 170 6,000 – 7,999 69 
2010 86   8,000 – 9,999 214 
2011 1   > 10,000 10 
Total 386  386  386 
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It is likely that component and workmanship failures occur more in the early years of 

a system’s life, get discovered and repaired, and then continue working properly. 

Investigation into this possibility is difficult because most of the systems in the dataset were 

installed before monitoring began in 2010 and 2011. Moreover, because so few observations 

were collected during the first year of monitoring in 2010, no degradation rates were 

calculated for 2011 and do not appear in Figure 4. Future study could investigate the 

potential for non-linear degradation and high early-life degradation in this data. Additionally, 

light-induced degradation during the first days of installation and other sources of beginning-

of-life degradation have been observed but this also remains outside the scope of this study. 

In sum, degradation rate estimates based on this sample of residential PV systems 

incented through the CSI show at their medians, increasing degradation that is statistically 

different from zero at the 95 percent confidence level with statistically significant differences 

between years. As above, a full analysis of the source of the yearly difference is beyond the 

scope of this work but different amounts of soiling due to different rain patterns across years 

is a likely source of this difference that would not be captured by the YOY approach. 

Vintage, module technology, and the number of observations per system appear broadly 

distributed across degradation rates by system. These estimates comprise the dependent 

variables in the analyses in Section 2.  

 

Section 2: Price and Degradation 

Price-Degradation Relationship 

 Referring to the workflow in Figure 1, Section 2 estimates how the relationship of 

system price scales with degradation rates calculated in Section 1. Continuing with the 
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hypothetical example of two residential PV systems in Oakland, CA, much like other 

situations where parties engage in contracts with specialized information, understood to 

different degrees by the parties involved, thoroughly understanding the underlying drivers of 

installation cost is difficult for a typical residential PV consumer. Recent developments9 

make transparency more attainable but the quality of the installation and other unobservable 

factors remain hidden. Degradation of whole systems includes quality differences that are 

difficult for consumers to understand before or even after making a purchase. In purchasing 

solar PV for one’s home, it remains difficult to know what one should pay when the final 

product, a standard kilowatt-hour (kWh), has a wide price range and degradation is known to 

vary. 

Research on the heterogeneity of PV system price has highlighted the possibility that 

observable characteristics alone fail to explain the large variation in installed price 

(Gillingham et al. 2014). One uncovered unobservable factor is that evidence of increased 

installer experience can decrease the non-hardware portion of system cost (Bollinger and 

Gillingham 2014). Therefore, at the very least, PV price reflects experience in addition to the 

cost and quality of system components. There are still other likely unobserved characteristics 

driving PV system prices. For instance, even when controlling for the effects of shading, 

array orientation, outages, and cloud cover, power production within a group of 80 systems 

using the same inverters and modules varied more than that observed between groups of 

systems with different modules (Lonij et al. 2012). Therefore, unobservable factors 

influencing system production not reflected in equipment may be significant sources of 

variation. Although shading, changing shade conditions, and soiling at each PV site remain 

                                                 
9 For more information see: https://www.energysage.com and https://pickmysolar.com.  

https://www.energysage.com/
https://pickmysolar.com/
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uncontrolled, Section 1 detailed the degradation rates of 386 systems as a proxy for system 

quality to characterize its relationship with the price of PV systems.   

Another reason to explore this relationship is that a better understanding of system 

quality is also critical for positive public opinion of PV systems. At least in part, solar PV 

adoption is the result of social influences called peer effects that rely on social approval 

instead of price alone (Rode and Weber 2011; Bollinger and Gillingham 2012; Noll, Dawes, 

and Rai 2014; Rai and Beck 2015). The connection between degradation and installation 

price is therefore important not only as a potential source of variation in system price but also 

for the credibility of PV as an emergent low-emission technology largely predicated on 

private economic benefits to system owners. The perception of private benefits leading to 

adoption requires credible performance. Reliable energy production is part of transparent 

prices and is important for potential PV customers. A primary aim of the analysis in this 

section is to uncover what relationship, if any, exists between installation price and 

degradation. The working hypothesis of this section is then: 

 
 
Hypothesis 
High-priced systems are associated with lower rates of degradation while low-priced systems 
are associated with higher rates of degradation. 
 

Methods 

I used two estimation approaches to capture the degradation response to installation price 

controlling for various factors. First, using the median hourly degradation rates for individual 

systems, I captured the relationship between the price of each system and degradation rates 

by assigning each system a price with a single degradation rate (n=386). Due to the cross-

sectional nature of the data, the approach takes advantage of weather-corrected performance 
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ratios (PRs) that help to minimize the uncertainty in the degradation rates. However, a 

tradeoff exists in using a smaller dataset. Therefore, a second approach uses the entirety of 

the data because a larger sample (n=2,878,039) can more easily detect an effect. I used the 

degradation rates with nonweather-corrected or simple PRs to show the response of price on 

degradation utilizing the entire set of hourly rates without distinguishing individual systems. 

This is important because of the possibility that medians hide uncertainty in the larger 

dataset. Although installation price is fixed for each system, this model introduces a fixed 

effect offering the ability to control for time variation in the price-degradation response. See 

Appendix B, Guass Markov Assumptions for more detailed model assumptions.  

Individual Systems Model and Results 

I modeled the relationship between degradation and installation price by fitting a 

linear equation to the observed data where the median of each system is counted once. The 

empirical specification uses a cross-section of individual systems regressing degradation rate 

(in percent per year) of each system on several covariates hypothesized to influence 

degradation. These variables are listed and described in Table 7. I modeled the degradation 

rate (Rd_i) for individual system i, in Equation 2.  

 
 
 𝑃𝑃𝑑𝑑_𝑖𝑖 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝒊𝒊 +  𝜷𝜷𝟐𝟐𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊 +  𝜷𝜷𝟑𝟑𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊 +  𝜷𝜷𝟒𝟒𝑻𝑻𝑷𝑷𝑻𝑻𝒊𝒊 +  𝜷𝜷𝟓𝟓𝑽𝑽𝑻𝑻𝑽𝑽𝒊𝒊 +  𝜷𝜷𝟔𝟔𝑴𝑴𝑹𝑹𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊

+  𝜷𝜷𝟕𝟕𝑽𝑽𝒊𝒊𝑽𝑽𝒊𝒊 + 𝜖𝜖𝑖𝑖 
(2) 

 
 
Expressed as real 2014 dollars per watt before incentives calculated in the TTS dataset, the 

system installation price (Pri) is the variable of interest and can be interpreted as the effect of 

system price on degradation (Rd_i). The nameplate rating of the system (Rati) represents the 

PV system capacity based on standard test conditions in kW because larger systems in terms 
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of DC capacity have higher costs. Module efficiency (Effi) is a proxy for the quality of the 

modules and is used in the industry as a heuristic for quality components helping to separate 

the effect of build quality. For example, SunPower modules are generally considered a 

premium product and show lower degradation than some other manufacturers (Anderson, 

Defreitas, and Hasselbrink, Jr. 2013). Although customer-owned systems do not lack the 

incentive to perform regular maintenance on PV systems they may lack both the knowledge 

to recognize a potential threat to prolonged performance or through limited experience, not 

realize that the system is underperforming. The difference in degradation between customer-

owned and third-party ownership (TPOi) likely entails owners with dedicated service 

personnel to perform maintenance without any homeowner action. Based on retail electricity 

rates and the amount of insolation for a given customer’s PV system, the value of solar 

variable (VOSi) is an estimate of the total value of all incentives and savings on utility bills. 

As a variable that captures the financial attractiveness of PV, customers in areas with a 

higher value of solar tend to see higher system prices (Gillingham et al. 2014). I also 

controlled for different module technologies (Mtechi) because they have different degradation 

patterns and different costs. There are three module technologies in this dataset; Mono-c-Si, 

Multi-c-Si, and HIT-Si. Lastly is vintage (Vini) or the year in which the system was installed 

which controls for the declining cost of systems over time. Table 7 provides descriptive 

statistics for these variables. The TTS dataset includes information on labor, inverter, 

module, and balance of system costs but none were available for the systems I analyzed. 

Therefore, component cost cannot be controlled here. 
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Table 7. Descriptive statistics for individual system regression variables 
Variable Mean SD Min Max Description and units 

Degradation Rate -1.0 1.3 -8.8 7.8  Median degradation rate/system  
(%/year) 

Installation Price 9.2 2.3 3.5 22  Purchase price of system  
(2014 real $/W)  

Nameplate Rating 4.8 2.3 1.3 14  DC capacity at STC 
(kW) 

Module 
Efficiency 

0.15 0.02 0.12 0.19  Conversion efficiency  
(%) 
 

Third Party 
Ownership 

N/A N/A N/A N/A  Third party owned versus 
customer owned  
(categorical) 

Value of Solar 9.2 2.4 5.1 15  Combined value of incentives 
and utility bill savings  
(real 2014 $/W) 

Module 
Technology 
 

N/A N/A N/A N/A  Mono-c-Si, Multi-c-Si, a-Si, 
HIT-Si (categorical) 

Vintage 2008 1 2007 2011  Year of system construction 
N= 386 

    
Table 8 shows the results from regressing degradation rate on the covariates specified 

in Equation 2. First, as evidenced by an R-squared value of 0.015 in model seven, almost all 

the variation in degradation remains unexplained by the model. Reasons include 

measurement error in the calculated degradation rates such as site conditions not captured by 

modeled irradiance, temperature, and wind data, partial or intermittent shading not captured 

by data filters, snow, and soiling. Although steps were taken to diminish the error in the 

estimated degradation rates by controlling for wind, and temperature the degradation rates 

used in the individual systems regression in Table 7 carry their own standard errors. 

Moreover, a trend exists in which larger rates both in the highly positive and highly negative 

direction show higher standard error than rates closer to zero; uncertainty surrounding rate 



 

 

34 

medians likely plays a role. See Appendix B, Uncertainty in Degradation Rate Medians for 

more detail. Remembering that whole system degradation includes all aspects of the 

performance of a system, perhaps equally the installation practices as equipment, further 

research is required to demonstrate non-equipment degradation pathways for inclusion in 

models attempting to explain degradation. This data currently lacks those variables.  

Table 8. Regressions results for individual systems  
VARIABLES (1) (2) (3) (4) (5) (6) (7) 
Installation Price -0.0425 -0.0548 -0.0551 -0.0555 -0.0566 -0.0554 -0.0534 
 (0.0429) (0.0429) (0.0435) (0.0436) (0.0433) (0.0430) (0.0441) 
Nameplate Rating  -0.0425 -0.0427 -0.0420 -0.0429 -0.0439 -0.0418 
  (0.0311) (0.0313) (0.0312) (0.0313) (0.0312) (0.0308) 
Module Efficiency   0.305 0.156 0.204 -2.702 -2.945 
   (3.159) (3.163) (3.176) (4.794) (4.890) 
Third Party Owned    -0.0992 -0.129 -0.164 -0.170 
    (0.221) (0.231) (0.238) (0.240) 
Value of Solar     -0.0162 -0.0156 -0.0199 
     (0.0254) (0.0255) (0.0275) 
Mono-c-Si      0.0800 0.118 
      (0.214) (0.227) 
Multi-c-Si      -0.101 -0.0706 
      (0.271) (0.271) 
Vintage       0.0390 
       (0.0680) 
Observations 386 386 386 386 386 386 386 
R-squared 0.005 0.010 0.010 0.011 0.012 0.014 0.015 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 

Table 8 shows that installation price on degradation is shown to have a slightly 

positive bias in the absence of nameplate rating. Module efficiency, third party ownership, 

and the value of solar all show similar effects on the magnitude of installation price but the 

addition of none of these covariates changes the probability of rejecting the null hypothesis 

that installation price has no impact on degradation at conventional confidence levels. The 

effect of module technology on degradation is variable relative to the base category, HIT-Si 
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but not statistically significant. The addition of vintage also has no significant effect on the 

price-degradation relationship. It should be noted that at lower confidence levels (75-80%) 

the effect of installation price and nameplate rating have consistent effects on faster 

degradation across models. At these lower levels, a dollar increase in installation price is 

associated with a 0.05% faster annual degradation, suggesting higher cost systems may be 

less reliable or that the effect is simply more apparent in higher cost systems. Similarly, a 1 

kW increase in nameplate rating is associated with 0.04% faster annual degradation. This 

could be an indication that degradation is more apparent in larger systems. Although the 

model still explains an extremely limited amount of the variation in degradation and 

statistical significance is not achieved at conventional levels, there is some indication that 

price may be an important indicator of degradation. Areas for future investigation include 

using additional variables to explain more variation in degradation, which can also decrease 

the potential that omitted variables bias regression coefficients and include additional 

methods to account for uncertainty in rate medians. 
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  Figure 5. Individual system regression 

 
 

Highlighting this relationship,   Figure 5 shows faster yet statistically insignificant 

association of degradation to increasing installation price. Overall, with individual system 

degradation rates shown on the vertical axis and installation price on the horizontal axis, the 

clear trend is faster degradation for increased installation price. Wide scatter of degradation 

rate medians away from the sloped line and outside of the 95 percent confidence interval 

indicate low model fit.  

All Systems Model and Results 

Taking a different view of the data by modeling all systems without differentiating 

degradation rates for individual systems allows three important changes; it drastically 

increases the number of data points used to estimate the response of degradation to price, 

hides none of the uncertainty around the rate medians of individual systems, and allows for 

the addition year fixed effects to account for unobserved characteristics in each year not 
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explained by the other variables. As with individual systems, Equation 3 uses a linear model 

to fit the observed data. I modeled the degradation rate (Rd_ij) indexed by system i at hourly 

identifier j in Equation 3.  

 
 

𝑃𝑃𝑑𝑑_𝑖𝑖𝑗𝑗 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝒊𝒊 +  𝜷𝜷𝟐𝟐𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊 +  𝜷𝜷𝟑𝟑𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊 + 𝜷𝜷𝟒𝟒𝑻𝑻𝑷𝑷𝑻𝑻𝒊𝒊 + 𝜷𝜷𝟓𝟓𝑽𝑽𝑻𝑻𝑽𝑽𝒊𝒊 +  𝜷𝜷𝟔𝟔𝑴𝑴𝑹𝑹𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊 + 𝜷𝜷𝟕𝟕𝑽𝑽𝒊𝒊𝑽𝑽𝒊𝒊
+ 𝜷𝜷𝟖𝟖𝑻𝑻𝑴𝑴𝑻𝑻𝑻𝑻𝒊𝒊𝒊𝒊  + 𝜽𝜽𝑹𝑹 + 𝜖𝜖𝑖𝑖𝑗𝑗 

 
 
(3) 

 
 
Compared to Equation 2, Equation 3 explores different sources of variation that include mean 

ambient temperature (Tempij) at hourly intervals at each system location. Because Section 1 

showed that there are statistically significant differences in degradation between years, I also 

included a fixed effect (𝜃𝜃𝑡𝑡) to control for any unobserved time-varying factors within years. 

Note that this model was coded with dummy variables for the year fixed effect and no 

coefficient is displayed. Without year fixed effects, coefficients are estimated based on 

installation price and the other covariates cross-sectionally and over time. Such an addition 

aids the ability to make an inference about the relationship. This ability is not available in the 

approach specified in Equation 2. I also added a cluster robust standard error to account for 

error correlation between the observations of each system (Cameron and Miller 2015). See 

Appendix B: Degradation and Price, Gauss-Markov Assumptions for OLS for more details. 

The variables in Equation 3 are listed and described in Table 9. 
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Table 9. Descriptive statistics for all-system regression variables 
Variable Mean SD Min Max Description and units 

Degradation Rate -1.4 27 -100 100 Degradation rate w/o weather 
correction 
(%/year) 

Installation Price 9.2 2.3 3.5 22 Purchase price of system  
(2014 real $/W)  

Nameplate Rating 4.8 2.3 1.3 14 DC capacity at STC 
(kW) 

Module 
Efficiency 

.15 .02 .12 .19 Conversion efficiency 
(%) 

Third Party 
Ownership 

N/A N/A N/A N/A Third party owned versus customer 
owned  
(categorical) 

Value of Solar 9.2 2.4 5.1 15 Value of incentives/utility bill 
savings  
(real 2014 $/W) 

Module 
Technology 

N/A N/A N/A N/A Mono-c-Si, Multi-c-Si, a-Si, HIT-Si 
(categorical) 

Temperature 22 7 -10 48 Ambient temperature (°C) 

Vintage 2008 1 2007 2011 Year of system construction 

N = 2,878,039 
 
 
The regression results using the entire dataset and including the year fixed effects are shown 

in Table 10. The top row contains the variable of interest, installation price. There are nine 

models specified with the last using a fixed effect. Like the individual systems regression 

results, these results show that this model explains an extremely small amount of the 

variation in the data. At best, the R-squared value in column 8 is 0.002. As in the individual 

system regressions, this is likely due to potential data quality issues in the dependent variable 

and lack of additional covariates and even with a drastically increased number of 

observations the model fails to explain much variation in degradation rates. From left to right 
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across columns, I added covariates. The response of degradation to price is initially of similar 

magnitude as in the individual systems but increases slightly with the addition of nameplate 

rating and is then statistically significant at all conventional levels except in the presence of 

year fixed effects. 



   Table 10. Regression results for all systems 
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 
         FE-year 
Installation Price -0.0472 -0.0689 -0.0650 -0.0649 -0.0667 -0.0651 -0.0650 -0.0651 -0.0611 
 (0.0527) (0.0532) (0.0538) (0.0538) (0.0537) (0.0559) (0.0558) (0.0559) (0.0544) 
Nameplate Rating  -0.0763 -0.0735 -0.0736 -0.0754 -0.0750 -0.0753 -0.0750 -0.0730 
  (0.0550) (0.0542) (0.0543) (0.0543) (0.0537) (0.0537) (0.0537) (0.0533) 
Module Efficiency   -3.468 -3.420 -3.350 -4.972 -4.941 -4.972 -5.086 
   (5.369) (5.452) (5.483) (7.818) (7.813) (7.818) (7.702) 
Third Party Ownership    0.0281 -0.00996 -0.0290 -0.0259 -0.0290 -0.0640 
    (0.302) (0.316) (0.319) (0.320) (0.319) (0.313) 
Value of Solar     -0.0205 -0.0233 -0.0216 -0.0233 -0.0193 
     (0.0402) (0.0429) (0.0429) (0.0429) (0.0426) 
Mono-c-Si      -0.245 -0.242 -0.245 -0.179 
      (0.302) (0.301) (0.302) (0.304) 
Multi-c-Si      -0.306 -0.303 -0.306 -0.223 
      (0.412) (0.412) (0.412) (0.413) 
Vintage       -0.0000 0.00104 0.00888 
       (0.109) (0.110) (0.00906) 
Temperature        -0.00294 -0.0611 
        (0.0095) (0.0544) 
Observations 2,878,039 2,878,039 2,878,039 2,878,039 2,878,039 2,878,039 2,878,039 2,878,039 2,878,039 
R-squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 
Number of ID         386 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 



There are three main takeaways from the results in Table 10. None of the coefficients of 

price are statistically significant at conventional levels, here again and evidenced by the R-

squared of 0.002 in model 8, only a fraction of the variation in degradation at the hourly level 

is explained, and overall, the models show slightly faster degradation because of increased 

installation price relative to those in Table 8. From left to right in Table 10, model 2 adds 

nameplate rating to the model and shows faster degradation from increased price. In model 3, 

adding module efficiency is associated with faster degradation in that a one percent increase 

in module efficiency has an effect in models 3-7 of anywhere from about 3.5 to 5 percent 

increase in degradation. Contrary to hypothesized, this indicates that module efficiency 

negatively affects performance. This is a surprising result and may be explained by a lack of 

additional control variables. Still, the effect is statistically insignificant so conclusions based 

on this result must acknowledge this uncertainty. Although it changes in sign as additional 

covariates are added, third party ownership relative to the base category of host-owned 

systems has no statistically significant effect across models 4-7 and the inclusion effected the 

degradation response to price very little. The value of solar remains statistically insignificant 

across models 5-7. In those jurisdictions where the total value of all incentives and savings 

on utility bills increases by one dollar per Watt, systems are associated with more faster 

degradation by about 0.02 percent per year. Mono and Multi-c-Si module technologies show 

a statistically insignificant and faster degradation relative to HIT modules and a slower 

degradation response to price. Temperature is associated with faster degradation when price 

increases and the effect of temperature itself shows that an increase of one degree Celsius 

drives faster degradation only very slightly.  

 The main difference in models is the addition of over 2 million observations, which 

when making the correction for cluster robust standard errors, has not increased the precision 
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of the estimates indicated by the lack of statistical significance for all covariates. Year fixed 

effects did not change the precision to the extent that any covariate has a statistically 

significant effect on degradation at conventional levels and exerted only a slightly positive 

influence on the magnitude of the coefficient. This means that unobserved time-varying 

factors in years may not be a significant source of unobserved variation because the ability to 

infer a statistically significant effect of installation price on degradation is not achieved. 

Degradation gets consistently faster with increased price and although no coefficient on 

installation price is statistically significant above the 90 percent level all aside from that in 

model 1 are significant at the 75 to 80 percent confidence levels. As in the individual systems 

regressions, this shows that installation price may still be an important factor in explaining 

degradation at the hourly level but one that does not rise above the noise even when 

dramatically increasing the number of observations. 

Although generally in the opposite direction than hypothesized, the individual and all-

systems models show no statistical significance for the effect of price on degradation. 

However, a lower confidence level would grant statistical significance in a stable way across 

models. A dollar increase in installation price per watt is associated with an increase in 

degradation by anywhere from about -0.05 to -0.07 percent per year. With and without fixed 

effects, these results have extremely limited predictive capacity because of low model fit. 

Any inference must be tempered by this fact. Further research to delineate the drivers of 

whole system degradation should include more covariates that separate system component 

characteristics from characteristics of installation practices, and potentially control for 

unobserved time-varying factors but at different temporal levels. Remembering the two 

systems in Oakland, CA, just blocks apart, even though price may be an important 
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determinant, this data is inconclusive that the difference in price for each system is 

statistically attributable to differences they experience in terms of whole-system degradation. 

Since I am interested both in the statistical and economic significance of degradation, 

I paint a picture of that significance in Section 3 by comparing a median degradation system 

to a system with zero degradation to highlight the difference in value. 

 

 Section 3: The value of degradation 
 

The careful consumer considering a PV system should question whether paying more 

for a system ensures enhanced performance and return on investment. Although this 

relationship requires further study to demarcate the causal mechanisms, estimating the 

economic value of degradation based on observed rates provides a more complete portrait of 

the impact to consumers. I used the levelized cost of energy (LCOE) defined as the present 

value of all lifetime project inputs divided by the lifetime energy production, to assess this 

impact. 

Whatever the relationship of degradation to price, the simple fact that systems vary in 

consistent energy production over their lifetimes begs the question of the financial impact of 

degradation on consumers. Studies outlining the sensitivity of LCOE to varying rates of 

degradation were either not done on deployed systems (Dirk C. Jordan et al. 2016) or are 

from utility-scale instead of residential data (Darling, You, and Velosa 2011). While the 

sensitivity of LCOE to degradation ranks below the real discount rate and conversion 

efficiency (Darling, You, and Velosa 2011) variation in degradation rates introduces risk into 

the cash flows needed to meet the financial obligations required if a project requires 

financing and return on investment in the case of outright purchase. Beyond financial risk, 
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the perception of PV as a reliable technology is critical for positive public opinion. The 

viability of solar PV as an emergent technology necessitates estimating the value of 

degradation. 

Methods 

Investment in a grid-connected PV system with degradation represents the lost 

electricity an owner cannot send to the grid; a capital cost with declining cash-flows. I 

calculated the LCOE of four different degradation scenarios by using the 10th, 50th, 90th 

percentiles, and zero degradation, considering the 10th percentile high degradation, the 50th 

medium, and the 90th low degradation. The units of degradation are percent loss per year 

making high degradation the greatest loss at -2.4%/year, median at -0.9%/year, and low to be 

0.00%/year, after rounding. These rates come from the individual systems rates found in the 

right-hand column of Table 2 in Section 1. 

 The dataset lacks system-level information for discount rates, useful life, and 

inverter replacement, and because I investigate the variation in the effect of degradation on 

LCOE I assumed a standard capital cost or system price. I retrieved capital cost for and 

consider a benchmark residential system to align with the mean cost in 2014 from Feldman et 

al. (2014) of $3.74/Watt. Although the minimum discount rate can be derived through after-

tax income on 30-year treasury bills, or using Department of Energy rate of 3 percent for 

energy projects (Rushing, Kneifel, and Lippiatt 2013), these may be thought of as minimum 

rates. Evidence suggests that residential PV system owners have significantly higher discount 

rates depending on whether a system owner engages in lease (21 +/- 14%) or a purchase (7 

+/- 5%) (Rai and Sigrin 2013). As have others for financial PV estimates (Feldman et al. 

2014), I used a 6.2 percent discount rate in this analysis.  
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Many modeling efforts of cost-competitiveness of solar PV consider the useful 

lifetime of grid-tied solar PV to be near 30 years (Reichelstein and Yorston 2013; Drury, 

Denholm, and Margolis 2011; Darling, You, and Velosa 2011; Tidball et al. 2010). Instead 

empirically-based system lifetimes, much of the thinking behind useful lifetime relates to the 

warranty period offered by either the module manufacturer or the installer. Photovoltaic-

specific information services aiming to drive uncertainty out of the PV purchase process such 

as Energy Sage, use product and performance warranty information for modules instead of 

whole systems, where many top module manufacturers offer 10-year warranties with 

performance guarantees around 80 percent performance output after 25 years of use (Energy 

Sage, 2017). Assuming a 25-year system life may underestimate the productive life but 

represents a decision point for system owners. Therefore, I used 25 years as the system life 

by which I model the change in LCOE due to degradation. Table 11 lists all these 

assumptions. 

Table 11. Assumptions for value of degradation 
Assumption Value Source 

Capital cost $3.74/W* Feldman et al. 2014 

Inverter replacement $0.57/W* Kneifel and Webb 2016 
from Liu et al. 2014; 
Goodrich, James, and 
Woodhouse 2012 

Discount rate 6.2% Feldman et al. 2014 

Useful life 25 years Author’s assumption 

* These were translated to $/kW for use in Equation 4 below. 
 

 
The assumptions in Table 11 input into Equation 5 result in LCOEs with variation 

resulting from high, median, and low degradation rates. Equation 5 takes mean values of 

yearly insolation, system rating, efficiency, area, and PR from the dataset. Here I assumed no 
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annual operations and maintenance costs nor residual value after 25 years of useful life. The 

numerator in Equation 5 includes the capital cost and an inverter replacement cost multiplied 

by the nameplate rating of the system to represent lifetime cash outflows. Typical inverter 

warranty periods are 10 years. I therefore include a warranty replacement cost discounted to 

present value in dollars per Watt at 10 years from installation. Because I assumed no annual 

costs for operations and maintenance nor other residual value post-project life, these cash 

flows are not discounted. They are the full lifetime cost of the system. The denominator 

shows the energy generated in the first year of operation multiplied by the degradation factor 

Rd, which decreases annual production as n increases from year 1 to 25. The initial 

production (kWhinitial) is the result of multiplying the number of days in the year by the mean 

POA irradiance per square meter per year across all systems sites. For more details, see 

Appendix C, LCOE Calculations. 
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(4) 

 
 
Where: 

CapCostsystem = Cost of system before incentive and tax credits ($/kW) 
Invreplace = Inverter replacement at 10 years of system life ($/kW) 
Rat = Mean system nameplate rating (kW) 
PR = Mean system performance ratio over the study period  
kWhinitial = Mean energy produced in the first full year of operation (AC-kWh) 
Eff = Mean efficiency across systems in this dataset 
A = Mean area of systems in this dataset 
Rd = Annual linear degradation rate estimated in Section 1 at p10, p50, and p90 
(%/year) 
n = Useful life of the system (years) 
 

 
I created the differences between the 10th

, 50th, and 90th percentiles to zero degradation as 

percentage changes in LCOE. The lost value from degradation (Vlost) is shown here as the net 
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present value of the difference between lifetime energy production with and without 

degradation over a 25-year useful life using discount rate (Dr). 
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(5) 

 
Where: 
 Vlost = Lost lifetime value from degradation ($) 
 RevnoDeg_n = Revenue in year n with zero degradation ($/year) 
 RevDeg_n = Revenue in year n with 10th, 50th, or 90th percentile degradation ($/year) 
 D = Discount rate (6.2%) 
   
 
 
The calculation for annual revenue is the single year energy production in the denominator of 

Equation 4 multiplied by the mean retail electricity rate in the dataset. This calculation is 

shown in Appendix C, LCOE Calculations.  

Results 

The economic significance of degradation is far from trivial. Figure 6 shows that 

there is a range of $0.10/kWh (low) to $0.14/kWh (high) around the median of $0.11/kWh 

caused by degradation. A system with zero degradation has an LCOE of $0.10/kWh. The 

changes in LCOE resulting from changes in degradation percentile are shown in Figure 6. 

Here, a high degradation system has an impact of increasing the cost per kWh of solar 32% 

over the horizontal dotted line that represents zero degradation. A low degradation has almost 

no effect because it is so close to the zero-degradation line. The median case is 11% higher 

than the dotted line meaning that median degradation adds 11% to the cost of a kWh from 

solar PV in the residential systems in this dataset. Note that LCOE numbers are rounded so 

simple arithmetic produces different results. 
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                Figure 6. Lifetime levelized cost and percent changes from degradation 

 
 
 
Regarding annual dollars lost to degradation, these numbers translate to a decrease in 

net present value (NPV) of all the cash flows over a 25-year system life of $1,740 for the 

high degradation system, $700 for a median system, and a $0 decrease for a low degradation 

system. Dividing these number by 25 years results in the mean annual dollar loss of $70 for 

high, $28 for median degradation, and $0 for a low degradation system. 

Median degradation observed in this dataset adds 11% to the LCOE of residential 

solar. High degradation adds almost triple that, about 32%, and low degradation—because of 

estimates of positive degradation—adds almost no cost at all. Lost solar for a mean system in 

this dataset centers around $700 but can lose anywhere from $1,740 to $0 over the lifetime of 

the system. In the hypothetical example of two systems in Oakland, CA, just blocks apart, a 

similar investment could return $1,740 less over a 25-year system life, which signifies a 32% 

increase in the LCOE for that customer. Importantly, the degradation rates including the 
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median case are estimates derived from the analysis detailed in Section 1 and represent real-

world financial impacts of degradation.  
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Discussion and Conclusion 
 

This work assesses the relationship between whole system degradation in mature 

systems and the price customers pay for a residential solar system in California under the 

California Solar Initiative. I hypothesized that higher cost has some advantage in 

performance seen through degradation. I found that median linear degradation rate estimates 

across all systems in the study sample are close to 1% annually, with a small confidence 

interval and similar when the fleet median is estimated across the medians of individual 

systems. However, median degradation rates for individual systems have widely varying 

uncertainties, which when included in a regression framework allows for very little 

explanatory power given the covariates. An attempt at a more precise relationship through a 

regression framework that includes all systems and all their estimates similarly reveals that a 

one dollar per Watt increase in system price is associated with faster degradation by about 

0.05 to 0.07 per year but the effect is not statistically significant at conventional levels. Thus, 

even though higher price appears to result in faster degradation and the relationship is stable 

across models, they explain only a tiny fraction of the variation in degradation. Ability to 

explain variation is important but the persistence of statistical significance at high but not 

conventional levels points to installation price as a potentially important indicator of 

degradation, especially in future work.  

The economic significance from degradation is also significant. Although there is a 

large range of 32% increase in LCOE for high degradation to 0% for low degradation, a 

median degradation system adds 11% to the LCOE. The consequences of an 

underperforming investment are not trivial. The federally legislated investment tax credit that 

is currently set to start decreasing from 30 percent in 2019 to 10 percent in 2022. Without 

this incentive, anywhere where the retail electricity rate is below the levelized cost of solar, 
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investment in a residential system is non-economic because the cost to produce energy is 

higher than its compensation. For example, the current average retail rate across the U.S. is 

$0.1053/kWh. Estimates from this analysis suggest that without incentives, investment with 

even median degradation where price approaches $0.11/kWh, would not likely be considered 

by residential customers. Because this cost is largely hidden from consumer’s economic 

decision-making is obscured. This could affect not only value to consumers but incentive 

structures, and discourse between proponents and investors, and requires verification and 

ultimately disclosure to stakeholders. 

As previously stated, analysis results beyond showing that degradation is both 

variable and impacts the lifetime value of solar PV are limited by the ability of these 

regression models to explain the variation in degradation with statistical significance. 

Although beyond the scope of this report, further research should seek variables that help 

separate system components from installation practices such as cost of labor, materials, 

customer acquisition, etc. and ways of limiting the uncertainty in individual degradation rates 

such as decreasing the width of the degradation rate distributions by performing YOY 

differencing from one year to all other years.  

Additional and more in-depth areas for future research should include unobserved 

temporal factors such as installer learning, changes in system shading over time, 

experimenting with lifetime kWh production or performance ratio instead of degradation as a 

proxy for system quality, investigating the causes of the worst cases of degradation, 

controlling for geographic variation in price at the utility-level, and as noted in Section 1, a 

full analysis of soiling.  

Determining the relationship between degradation and price may be more tractable 

when studied across time to control for installer learning and installer market competition. As 
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installers move down a learning curve one would expect that reputation is at least somewhat 

dependent upon degradation (system quality) and price, especially within the same area such 

as a utility service area. An index of the median degradation rate and median price within a 

utility service area could compare degradation between high and low-cost systems within the 

same area. Therefore, a reputation or learning variable could capture some variation from 

installer learning that impacts both price and degradation. Furthermore, because installer 

learning is likely correlated with price and degradation the current models are likely biased 

from this omission. 

Changing shade conditions over time at individual system sites, which is currently not 

controlled for in this study warrants future study as well. Future investigation should separate 

performance data seasonally because the sun is lower in the sky over winter months in the 

northern hemisphere and system design may fail to account for difference in shade and 

partial shade structures such as trees that only shade an array when the sun angle is low in 

winter months. A more specific sampling procedure could also include site surveys that 

inquire directly into customer or third-party owner habits that deal with shade over time. 

Quantifying changing shade conditions is important because it is unobservable and heavily 

impacts system performance and financial return. 

Different measures of system quality may more easily reveal a relationship to price. 

Using degradation to establish a relationship between price and system performance over 

time has inherent difficulties. This study consistently shows low model fit to degradation 

either because of data quality issues in the degradation rate calculation or lack of additional 

covariates. However, this could also be the result of looking for small effects in degradation 

when that measure includes large variation. Another option could be to simply use total 

lifetime system output in kWh or the performance ratios themselves. The potential 
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advantages are in the simplicity of calculation and less overall variation relative to effect 

size.   

Information about the performance of residential PV systems is important both for 

transparency in price and credibility of a PV technology. Therefore, an inquiry into the 

causes of the worst cases of degradation warrant future investigation on its own. This could 

also inform educational efforts that decrease risk by making system owners proactive both 

during the purchase process and system lifetime. The information could also inform incentive 

structures that weigh the costs and benefits of compensating performance versus simply 

installation. 

Finally, because there is known variation between utility service areas two 

approaches warrant inquiry. First, interacting utility with price would capture the effect of 

price variation across utilities. Second, full analysis of soiling using more granular rain data 

would be useful in isolating the effect of degradation from soiling that may appear across 

years and utilities, which is currently not captured in the models in this study. 

Still, this analysis combines degradation and price at the level of the entire installation 

over a portion of its lifetime and offers a starting point for understanding the potential trade-

off between system quality and price. This relationship is important because consumer 

perception of the benefits they will receive from purchasing a potentially important low-

emissions technology at “low-cost” need not indicate low quality. Given the variation in 

degradation and the implications for lifetime cost, the results shown here are encouraged by 

the existence of performance guarantees, real-time customer performance information, and 

product warranties. The performance differences hypothetical PV owners in Oakland 

experience have yet to be explained by any larger pattern of installation price. Still, neighbors 

and colleagues will be asking how satisfied they are with what they got. Therefore, future 
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research into mechanisms promoting performance is required to increase transparency to 

potential customers.  
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Appendix A: Degradation Calculations 

 
Examples of Discarded Systems 
 

Figure A - 1 is an example of data verified as unusable for this analysis due to 

insufficient data from too few observations. Systems with similar trends seen in daily data 

were excluded because a degradation rate calculation using the YOY approach requires at 

least 2 years of data by which to difference PRs. Figure A - 2 and Figure A - 3 show data 

shifts. The shift in Figure A - 2 cannot be reconciled because the factor to correct the shift is 

unknown whereas the shift in Figure A - 3 represents a reversed current transducer and can 

be corrected using the absolute value of the magnitude. Several systems exhibited this 

condition and were corrected. Note that plots were made with daily points instead of hourly 

points. 
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          Figure A - 1. Too few observations 

 
 
 
 

         Figure A - 2. Unreconciled shift 
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         Figure A - 3. Reconciled shift 

 
 
 
 
 
 
Plane of Array Radiation 
 
Equation A3 – A6 show the calculations made to arrive at POA irradiance using the Perez 
model (1990). Equations A3 – A5 were taken from PV Performance Modeling Collaborative 
available at: https://pvpmc.sandia.gov/. 
 
 𝑬𝑬𝑷𝑷𝑻𝑻𝑷𝑷 = 𝑬𝑬𝑩𝑩 + 𝑬𝑬𝑮𝑮 + 𝑬𝑬𝑫𝑫 (A3) 
 
 
Plane of array beam component 
 
 𝑬𝑬𝑩𝑩 = 𝑫𝑫𝑫𝑫𝑫𝑫 ∗ 𝐜𝐜𝐜𝐜𝐜𝐜 (θ) (A4) 
 
 
DNI = Direct normal irradiance 
θ = Angle of incidence 
 
 
Plane of array ground-reflected component 
 
 

𝑬𝑬𝑮𝑮 = 𝑮𝑮𝑮𝑮𝑫𝑫 ∗ 𝑷𝑷𝑨𝑨𝑨𝑨𝑴𝑴𝑨𝑨𝑨𝑨 ∗
�𝟏𝟏 − 𝑴𝑴𝑨𝑨𝒄𝒄�𝜽𝜽𝑻𝑻,𝑽𝑽𝑺𝑺𝑷𝑷𝑬𝑬𝑹𝑹𝑴𝑴𝑴𝑴��

𝟐𝟐
 

 
(A5) 
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Where: 

EG = Ground-reflected irradiance 
GHI = Global horizontal irradiance 
Albedo = Reflectivity of the surrounding ground surface.  
θT,Surface = Surface angle of the surrounding ground 

 
 
 
 
Plane of array sky-diffuse component 
 
 

𝑬𝑬𝑫𝑫 = 𝑫𝑫𝑮𝑮𝑫𝑫 �(𝟏𝟏 − 𝑭𝑭𝟏𝟏)�
𝟏𝟏 + 𝑴𝑴𝑨𝑨𝒄𝒄(𝜽𝜽𝑻𝑻)

𝟐𝟐
� + 𝑭𝑭𝟏𝟏 �

𝑹𝑹
𝑨𝑨
� + 𝑭𝑭𝟐𝟐𝒄𝒄𝒊𝒊𝑽𝑽(𝜽𝜽𝑻𝑻)� 

 

 
(A6) 

 
Where: 

F1= Function that describe circumsolar and horizon brightness 
F2 = Function that describe circumsolar and horizon brightness 
a = max(0, cos(θ)) 
b = max(cos(85º)), cos(𝜃𝜃𝜃𝜃)) 
θ = Angle of incidence 
θz = Solar zenith angle 
θT = Array tilt from horizontal 

 
This is a basic description of the Perez model (Perez et al. (1990). For a more detailed 
description see Duffie, Beckman, and Worek (2013). 
 
 
Standard Test Conditions 
 

Standard Test Conditions (STC) are a set of laboratory conditions under which PV 

modules are tested to provide a nominal rating and is how system nameplate ratings are 

defined. The conditions are standardized to the following 

• Ambient temperature of 25°C 
• Irradiance of 1000 W/m2  
• American Society for Testing and Materials (ASTM) G173-03 Standard Spectrum 

Irradiance 
• Air mass index of 1.5 
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Convective Heat Transfer Equations and Coefficients  
 

Equation A1 describes a generalized formula for empirically derived module back 

surface-temperature based on King, Boyson, and Kratochvil (2004b) and used in Dierauf et 

al. (2013) to correct for weather influence on module and array DC output. 

 
 𝑇𝑇𝑠𝑠 = 𝐺𝐺𝑃𝑃𝑃𝑃𝐴𝐴 ∗  �𝑅𝑅(𝑎𝑎+𝑏𝑏∗𝑊𝑊𝑆𝑆)� + 𝑇𝑇𝑎𝑎 (A1) 

Where: 
Tm  = module back-surface temperature [°C]  
GPOA  = POA irradiance from calibrated reference cells [W/m2]  
Ta  = ambient temperature [°C]  
WS  = the measured wind speed corrected to a measurement height of 10 meters 
[m/s]  
a  = empirical constant reflecting the increase of module temperature with 
sunlight  
b  = empirical constant reflecting the effect of wind speed on the module 

temperature [s/m]  
e  = Euler's constant and the base for the natural logarithm.  

 
While wind speed and module temperature increase with incident sunlight, it is their 

influence on module temperature cell temperature that influences the module temperature 

coefficient of power. The effect of module cell temperature is derived using Equation A2 

found in Dierauf et al. (2013). 

 
𝑻𝑻𝑴𝑴𝑴𝑴𝑨𝑨𝑨𝑨 = 𝑻𝑻𝑻𝑻 + �

𝑮𝑮𝑷𝑷𝑻𝑻𝑷𝑷
𝑮𝑮𝑽𝑽𝑻𝑻𝑺𝑺

� ∗  ∆𝑻𝑻𝑴𝑴𝑽𝑽𝑨𝑨 (A2) 

 
Where: 

Tcell  = predicted operating cell temperature [°C] 13  
Tm  = predicted module surface temperature as determined by Equation (3) [°C]  
GPOA  = POA irradiance, as described above [W/m2]  
GSTC  = reference irradiation for the correlation; constant at 1,000 [W/m2]  
ΔTcnd = conduction temperature drop as presented in Table 2 below.  

 
 
I used row-two coefficients. The data do not provide information regarding mounting type so 

coefficients specific to each system cannot be known.  

      Table A - 1. Conduction coefficients 
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Module Type Mount a b ∆Tcnd(°C) 
Glass/cell/glass Open rack -3.47 -0.0594 3 
Glass/cell/glass Close-roof 

mount 
-2.98 -0.0471 1 

Glass/cell/polymer 
sheet 

Open rack -3.56 -0.0750 3 

Glass/cell/polymer 
sheet 

Insulated rack -2.81 -0.0455 0 

Polymer/thin-
film/steel 

Open rack -3.58 -0.1130 3 

           Source: Table 2, page 12 in King, Boyson, and Kratochvil (2004b).  
 
 
Computing the irradiance-weighted average cell temperature includes the cell temperature 
(Tcell) and POA irradiance as shown in Equation A3. This is a location-specific yearly-average 
cell temperature that corrects the PR from measured data to generate a predicated value. 
 
 

𝑻𝑻𝑴𝑴𝑴𝑴𝑨𝑨𝑨𝑨_𝑹𝑹𝒕𝒕𝑻𝑻_𝑹𝑹𝒂𝒂𝒂𝒂 =
∑�𝑮𝑮𝑷𝑷𝑻𝑻𝑷𝑷_𝑹𝑹𝒕𝒕𝑻𝑻_𝒊𝒊 ∗ 𝑻𝑻𝑴𝑴𝑴𝑴𝑨𝑨𝑨𝑨_𝑹𝑹𝒕𝒕𝑻𝑻_𝒊𝒊�

∑�𝑮𝑮𝑷𝑷𝑻𝑻𝑷𝑷_𝑹𝑹𝒕𝒕𝑻𝑻_𝒊𝒊�
 

 

 
(A3) 

 
Where:  

Tcell_typ_avg =average irradiance-weighted cell temperature from one the current year of 
weather data 

 Tcell_typ_j = calculated cell operating temperature for each hour (ºC) 
 GPOA_typ_j = POA irradiance for each hour determined from one the current year 
 j = hour of the year 
 This was taken directly from Dierauf et al. (2013), page 13. 
 
Positive Degradation 
 

Further illustrating the point that no physical impossibility precludes degradation 

rates from being negative, Figure A - 4 and Figure A - 5 show that degradation rates can be 

positive when all available years are included. The median degradation rate in Figure A - 4 is 

0.1 %/year. However, notice the gap in data and then increase in hourly degradation rates 

following the gap in 2014. When I discarded all the data in 2014 as shown in Figure A - 4, 

the resulting calculation of the median degradation rate for this system becomes slightly 

negative at -0.008 %/year, in Figure A - 5. Therefore, rather than a manifestation solely of 

uncertainty, a period of low followed by a period of higher measurements influence median 
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degradation rates. Underlying these rates are PR values that show a large positive change 

from 2013 to 2014. Therefore, low performance ratios in one year affect the degradation rate 

when differencing over years. 

 
 

    Figure A - 4. Time-series plot of degradation exhibiting negative degradation 
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Figure A - 5. Time-series plot of degradation exhibiting positive degradation 
after discarding a year 
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Appendix B: Degradation and Price  

Gauss Markov assumptions for OLS 
 

To eliminate the potential for biased coefficients when using ordinary least squares 

(OLS) for multiple linear regression five assumptions must be defended. These are 

commonly known as the Gauss-Markov assumptions. In short, these justifications must 

demonstrate that the expected value of the errors resulting from the regression is equal to 

zero, these errors are uncorrelated with any of the independent variables, and they have equal 

variance. Below, I provide a brief justification for the variables used in Equations 2 and 3 in 

Section 2 meeting these criteria. These criteria are taken from Wooldridge (2011) and the 

interpretation are my own. 

 
1. Linear in parameters 

The regression coefficients have a ceteris paribus population effect on the variables 

excluding the situation where the coefficients are non-linear. Even though there is the 

potential for the line of best fit to include a squared term, the squared term is a result 

of the variable and not the coefficient or parameter. In the case of the degradation 

regression coefficients, evidence of non-linearity is beyond the scope of this study but 

does exist. Thus, the parameters are linear in any case. 

 
2. Random sampling 

The sampling of the PV systems used in this analysis is random and has been chosen 

to be a representative sample of the population of the systems in the CSI rebate 

program. The sites chosen were selected using a randomized Monte Carlo Simulation 

to arrive at sample requirements based on year of installation, program administrator, 

location and mounting type across commercial and residential sites to ensure 
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statistically significant results can be gathered for different types of systems. This 

information was gathered from Barsun (2010). 

 
3. No perfect collinearity 

Sample variation is required in each independent variable with no independent 

variables being an exact linear combination of another. The variation included in each 

independent variable is listed in Table 7 and Table 9. 

 
4. Zero conditional mean 

Unobserved factors must be unrelated to independent variables and on average the 

expected value of the error term given all variables is equal to zero. Thus, given the 

data, there are no additional covariates hypothesized to impact degradation and are 

therefore introducing bias into the coefficient on the price variable in Equation2 and 3 

in Section 2. In other words, there are no variables that contain unaccounted-for 

variation in the models presented above. Further research should be conducted to 

prove the validity of this assumption. 

 
5. Homoskedasticity 

The error term must be the same variance across independent variables. This can be 

empirically tested and statistically treated by estimating standard errors robust to 

heteroskedasticity, which I have done above. In Equation 2. This assumption affects 

the ability to make a sound inference based on the magnitude of the estimated 

standard errors. By introducing robust standard errors, the estimates of statistical 

significance I made in Section 2 can be considered conservative while correcting for 

any heteroskedasticity. Equation 3 uses cluster robust standard errors to account for 

the fact that regression model errors are independent and uncorrelated across systems 

but within systems this correlation exists. Although this correction has no bearing on 
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the magnitude of the coefficients, not employing this correction is likely to result in 

standard errors that overstate the precisions with which a statistically significant 

effect can be discerned (Cameron and Miller 2015). Again, this is a method of 

making inference from the model in Equation 3 more conservative. 

 
 

Uncertainty in Degradation Rate Medians 
 

As noted in Section 2, the relationship between positive degradation and uncertainty 

is plotted in Figure B - 1. The median degradation rates for each system are on the vertical 

axis and the bootstrapped standard error of the median on the horizontal axis. A pattern exists 

in which the most extreme values of the median degradation, both in the positive and 

negative direction, have the largest uncertainties associated with them. Although beyond the 

scope of this work, this indicates that controlling for the uncertainty in the estimate of the 

median degradation rate is important.  

     Figure B - 1. Uncertainty in the dependent variable 
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Appendix C: Value of Degradation Calculation 
 
LCOE Calculations 
 

I modified the levelized cost of energy in Equation 5 above, from Equations C1 and 

C2 used in previous research (Cambell 2008; Darling, You, and Velosa 2011). Reviewing 

Equation 3.5 shows that I excluded the factor that appears to discount kWh as Equation C2 

shows. Solutions have been rounded to the nearest cent. 
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𝑖𝑖 =
$𝟎𝟎.𝟏𝟏𝟏𝟏
𝒌𝒌𝒌𝒌𝑴𝑴

 

 

𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡90 =
�$3.74
𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 + $0.57

𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶� ∗
1000 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶

𝑘𝑘𝑘𝑘 ∗  4.8𝑘𝑘𝑘𝑘 

∑ �1746 𝑘𝑘𝑘𝑘ℎ
𝐿𝐿2 ∗ 𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒 ∗ 0.15 ∗ 32.5𝐿𝐿2 ∗ 0.86𝑃𝑃𝑃𝑃�𝑁𝑁

𝑖𝑖=1 ∗ �1 + �0.000
𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒 ��

𝑖𝑖 =
$𝟎𝟎.𝟏𝟏𝟎𝟎
𝒌𝒌𝒌𝒌𝑴𝑴
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𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
�$3.74
𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 + $0.57

𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶� ∗
1000 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶

𝑘𝑘𝑘𝑘 ∗  4.8𝑘𝑘𝑘𝑘 ∗ 0.86𝑃𝑃𝑃𝑃

∑ �1746 𝑘𝑘𝑘𝑘ℎ
𝐿𝐿2 ∗ 𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒 ∗ 0.15 ∗ 32.5𝐿𝐿2 ∗ 0.86𝑃𝑃𝑃𝑃�𝑁𝑁

𝑖𝑖=1

=
$𝟎𝟎.𝟏𝟏𝟎𝟎
𝒌𝒌𝒌𝒌𝑴𝑴

 

 
 
 
Additional lifetime cost from zero to high degradation (10th percentile) and zero to low (90th 

percentile) is shown in the calculations below. Percentages have been rounded to the nearest 

whole percent.  

 
 

∆ 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡90_𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡90 − 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎

𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡50𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎
= 𝟎𝟎.𝟎𝟎% 

 

∆ 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡50_𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡50 − 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎

𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎
= 𝟏𝟏𝟏𝟏% 

 

∆ 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡10_𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑡𝑡10 − 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎

𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎
= 𝟑𝟑𝟐𝟐% 

 
 
Lost value 
 

The following calculations show the revenue after the first year of operation with a 

mean system in the dataset. The only difference is a result of the degradation rates. The only 

difference between these calculations and those above is the retail electricity rate Re, which 

across all 386 systems in the dataset is $0.15/kWh (with rounding). These are the 

intermediate step not shown in Equation 5, Section 3. Due to rounding, solutions do not 

equate but were modeled without rounding until the final solution, which is shown here. 

 

𝑃𝑃𝑅𝑅𝐼𝐼𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =  
1746 𝑘𝑘𝑘𝑘ℎ
𝐿𝐿2 ∗ 𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒

∗ 0.15 ∗ 32.5𝐿𝐿2 ∗ 0.86𝑃𝑃𝑃𝑃 ∗
$0.15
𝑘𝑘𝑘𝑘ℎ

𝑃𝑃𝑐𝑐 = $𝟏𝟏,𝟐𝟐𝟐𝟐𝟓𝟓 

   
 

𝑃𝑃𝑅𝑅𝐼𝐼𝑡𝑡90 =  
1746 𝑘𝑘𝑘𝑘ℎ
𝐿𝐿2 ∗ 𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒

∗ 0.15 ∗ 32.5𝐿𝐿2 ∗ 0.86𝑃𝑃𝑃𝑃 ∗
$0.15
𝑘𝑘𝑘𝑘ℎ

𝑃𝑃𝑐𝑐 ∗ (𝟏𝟏 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) = $𝟏𝟏,𝟐𝟐𝟐𝟐𝟓𝟓 
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𝑃𝑃𝑅𝑅𝐼𝐼𝑡𝑡50 =  
1746 𝑘𝑘𝑘𝑘ℎ
𝐿𝐿2 ∗ 𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒

∗ 0.15 ∗ 32.5𝐿𝐿2 ∗ 0.86𝑃𝑃𝑃𝑃 ∗
$0.15
𝑘𝑘𝑘𝑘ℎ

𝑃𝑃𝑐𝑐 ∗ (𝟏𝟏 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) = $𝟏𝟏,𝟐𝟐𝟏𝟏𝟒𝟒 

 

 

 
𝑃𝑃𝑅𝑅𝐼𝐼𝑡𝑡10 =  

1746 𝑘𝑘𝑘𝑘ℎ
𝐿𝐿2 ∗ 𝐿𝐿𝑅𝑅𝐶𝐶𝑒𝑒

∗ 0.15 ∗ 32.5𝐿𝐿2 ∗ 0.86𝑃𝑃𝑃𝑃 ∗
$0.15
𝑘𝑘𝑘𝑘ℎ

𝑃𝑃𝑐𝑐 ∗ (𝟏𝟏 − 𝟎𝟎.𝟎𝟎𝟐𝟐𝟒𝟒) = $𝟏𝟏,𝟏𝟏𝟎𝟎𝟓𝟓 

 

 

 
Note that the changes between the 90th percentile degradation and zero degradation are 

equivalent above and slightly different below because 90th percentile degradation from 

Section 1 is very slightly positive. The following calculations show the NPV of the 

difference in the lifetime cash flows from the 10th, 50th, and 90th percentiles to zero 

degradation. 

 
 

𝑉𝑉𝐶𝐶𝐿𝐿𝑝𝑝𝑅𝑅 𝐷𝐷𝐿𝐿𝐸𝐸𝐸𝐸𝑅𝑅𝑒𝑒𝑅𝑅𝐼𝐼𝐿𝐿𝑅𝑅𝑡𝑡10_𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
1
𝑁𝑁
��

𝑃𝑃𝑅𝑅𝐼𝐼𝑡𝑡10 −  𝑃𝑃𝑅𝑅𝐼𝐼𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎
(1 + 𝐷𝐷𝑟𝑟)𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

= −$𝟏𝟏𝟕𝟕𝟒𝟒𝟎𝟎 

 

𝑉𝑉𝐶𝐶𝐿𝐿𝑝𝑝𝑅𝑅 𝐷𝐷𝐿𝐿𝐸𝐸𝐸𝐸𝑅𝑅𝑒𝑒𝑅𝑅𝐼𝐼𝐿𝐿𝑅𝑅𝑡𝑡50_𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
1
𝑁𝑁
��

𝑃𝑃𝑅𝑅𝐼𝐼𝑡𝑡50 −  𝑃𝑃𝑅𝑅𝐼𝐼𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎
(1 + 𝐷𝐷𝑟𝑟)𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

= −$𝟕𝟕𝟎𝟎𝟎𝟎 

 

𝑉𝑉𝐶𝐶𝐿𝐿𝑝𝑝𝑅𝑅 𝐷𝐷𝐿𝐿𝐸𝐸𝐸𝐸𝑅𝑅𝑒𝑒𝑅𝑅𝐼𝐼𝐿𝐿𝑅𝑅𝑡𝑡90_𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎 =
1
𝑁𝑁
��

𝑃𝑃𝑅𝑅𝐼𝐼𝑡𝑡90 −  𝑃𝑃𝑅𝑅𝐼𝐼𝑁𝑁𝑙𝑙𝑛𝑛𝑐𝑐𝑎𝑎
(1 + 𝐷𝐷𝑟𝑟)𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

= $𝟎𝟎 
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